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SUMMARY

An experimentedinvedigation concerned primarily with the
exlension of tat datu on the drag of revolving diake, qIlin&r8,
and 8treandine rods to high Mach numlxm and Reynolde num-
ber8 h pnxentd. A Mach number of I?.7 tutu reached for
revolving rob with Freon 113 aa the medium. The teeta-on
di8k8 extendz.dto a Reynolok number of 7,000,000. Pam of
th? 8tudy are devoh?dto a reexam?ka.twn of the von Kdrmdn-
Prandt-1 logarithmic reeietunce Zuw and the Ackeret-Taylm-
euper80nic drag fomnulu and conditti for the+ validity.
Tlu L38i% cm$r?n, in gened, earlier theorize and & certain
new rew?t.e. A ji?uhg of j&8t importance 12 thut the 8kin
jridion does not depend on the Mach number. Of intemet,
do, am experimental reed% on revolving rode at very high
Mach ?lIUmbt7’8) which 8hOW drag cwrves of the type familiar
jrona balhtix. A mw resw.ltwhich may huve general applic-
ability b that the e$ect of eurface roughm?88inoolvestwo distinct
param4ter8, particle tize and particle unit density. T/b part-
icle tiza uniquely detmninee the Reynolo%number at which the
e@t oj tlw rowghme88jir8t appears, wherea8 the particle unit
deneity determin.a & behavior of the drag coejbien$ & higher
Re~nold8 number8. Beyond i% criti.cul ReynoUe number @
which tha roughnea8e$ect appear8, the drag coe$lci.eniti found
to be ajunction oj unit derwity. In the limiting me of particle
%.twa$ti,)’ or a maximum o?+mdy of particles, the drag
coeji%ieni remaiw cowtant m t-b Bq..l& numbm G
increased.

THEORETICAL BACKGROUND

VON K.iRMhN-PR.4NDTL THEORY FOE PIPES

Measurements of the value of the skin friction between o
fluid and a solid constitute one of the means for studying
the nature of turbulent flow. Most of the pioneer analytical
work in this field is found in the papera by von K&rm4n (ref-
erences 1 and 2) and Prandtl (reference 3). The treak
ment used in the first part of this section follows the work of
Prandtl which, in turn, is closely related to the von K&rm6n
papera. The theory, which concerns the flow in pipes, is
given in considerable detail aa it forms the basis for the suc-
ceeding discussion on flat plates, cylinders, and disks. The
theoretical work in this section constitutes mainly an at-
tempt to analyze and organize earlier work found in many
scattered articles. Gmsiderable work along such lines haa
already been done by Goldstein, who is responsible for an
expression for the drag on revolving disks.

The von KLrm&n-Prandtl theory for flow in the turbulent
layer is bnsed on the following two nsmunptions:

(1) The ratio of the velocity deficiency to the friction
velocity is a function of geometric parameters only.

(2) Adjacent to the wall, but beyond the laminnr sublayar,
the slope of the curve representing this ratio is invemely
proportional to the distance from the wall. The constant
of proportionality is a universal constant.

The friction velocity is deiined ns

and the corresponding friction length is defined as

(AU symbols used in this paper are defined in appendix A.)
A reference time may be given as

T=&=&,=:
rr o

The geometric conditions for a pipe are given by one param-
eter, the radius a. A revolving cylinder of infinite length
represents another singl~parameter ease, in which the refer-
ence parameter is the radius of the cylinder.

The equation of motion can be written in the form

and, by adopting suitably dellned mean vahm with respeot
to time, at a given proiile

Henceforth u will designate such mean velocity. By
measuring the velocity with respect to a velocity U. in a
fixed geometrical position c=ka,

is obtained. About 1930 von K&rm6n showed that for the
turbulent layer this function is essentkdly independent of L
and dependent only on the geometry as indicated in assump-
tion (1); therefore

-C=f, (:)u,
367
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This quite remarkable relationship, which has been generally
confirmed by Nikuradse, Wattendorf, and others (references
5 to 7), implies a similarity in the turbulent&eld pattern
away from the wills at all Reynolds numbers. The basic
reason for this similwiQ remains unknown.

It follows from assumption (2) that near the wall

where l/K is the constant of proportionality. (Natural
logarithm has been used throughout except where otherwise
indicated.) Site u= U6at y= ~, this relation reduces to

This logarithmic relationship holds to a certain value c of
the significant parameter a (see fig. 1), where c=lca with k a
constant. The value of 1—k is only a small fraction, so
that the point c will be relatively close to the wall. The
veloci~ in the center of the pipe is therefore given as the
sum of three expressions, that is,

For the lnminar sublayer

u, Is
~=z=a

and the equation may be rewritten as

=Cl+:log ;+C,

where

C,=a–~ log a

and

G=[f (:)]++ log:

The constant G is equal to the nondimensional velocity
measured on the logarithmic velocity prcdlle when this
curve is extrapolated to y=L, and the constsat Ct is the
excess velocity in the center of the pipe as compared with
that of the logarithmic line extended to y=a. (See fig. 1.)
When these constants are combined, the following general
relation is obtained:

+= C++ log;

The application of this theory to caw other than circular
pipes is restricted to geometric configurations given by a
single parametm. It is interesting to observe that both

o, and 1/Kare univer%al constants rcsultiw from the. second
assumption-namely, that the flow near n wall is Q function
of the distance from the wall only The second constant
C, which gives the excess velocity aa compared with tho
logarithmic distribution at a reference point, the location
of Which depends on the geometric dimensions involved, is
not a universal constant but is dependent on the configuration
and the choice of reference length.

The effect of surface roughness maybe trefitwd in a similnr
manner. If the roughness parameter e/L is less than a certain
mnetitude, there is obviously no effect at all. This vnlue

of c/L is found experimentally to be 3.3. For ~ > 3.3,

U~U, is shown to be constant, or independent of L,
except for the so-called unsaturated condition which will be
defied later. Thus

=C++ log 3.3+: log:

or

The velocity distribution is exactly as if there were n
laminar layer present of a thickness 6=3.5c or as if the length

1

L ‘Vere Xli ‘“
When L<& c, the velocity distribution no

longer changes with an increase in Reynolds number R. It
seems, therefore, that the distance from the wall of the
innermost disturbance, or the mean value of the thickness

Unwer~l velacl~
Cfetklency furldmn.

+.+.
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L amlnar flow
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theory.
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of the hunimr layer, is of the order of three to four times
the height of the irregularities or the gTain size e. This fact is
not inconsistent with the physical interpretation.

d
The quantity UW/U, is shown to equal ~. Further,

D

v U.u
‘T. --m

and, therefore,

d
G.&R ~

where R is referred to the maximum velocity and is equal to
Z7mAZ/U. The equation

may thus be written

J_ r&=C+: log R ~

By the similarity hypothesis, the mean velocity in a pipe.
dtiera from the maximum value by a constant, or

where Z7mis the mean value of the velocity. Prandtl gives
4,07 for the value of KZ (See reference 3, p. 142.) Note
further that the product R~ remains the same whether

R and CD refer to the mean or the maximum value of the
velocity; therefore,

$= C–4.07+: log R
K T $

and, finaUy, with R and CD referring to the

where

C–4.07–; log >E?
c,= – ,6

With 0=5.5 and K=().4,

P4=0.4

mean velocity,

This value is not accurately established, as the various
authom seem to differ.

DRAG OF FLAT PLATE9

In order to obtain the drag formula for flat plates, n
calculation similar to the von K6rm6n-Prandtl treatment
for pipes may be performed. The velocity deficiency AU is
given by the relation

Joi% :-
where ZJ,. is a mean value between O and z, the distance
along the plnte. The missing momentum may be written as

‘=S’P(+W
or

where U is the stream velocity and & is a significant length
giving the thickness of the boundary layer. Rewritten,
this equation becomes

r ‘u (’)-(%’hfxiaw+$=%,T72d6,

or, by virtue of the similarity lnw,

Since the momentum is given directly as

the following identity is obtained:

or

which giVf33

Using the logarithmic deficiency relation gives for 05 the
value l/K, or 2.5, and for C6/C6 the value 2/K, or 5; thus
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By use of the von K6rm6n-Prandtl treatment, the stream
velooity is obtained in ewmtially the same form as for pipes.
With small adjustments, therefore,

u 8,u,=
—=K,+: log ~uTM

By use of the expression for &/z, the following equation is
obtained:

&=K4+4.0710g,o &~&

LOCAL VALUIH OF DRAG COEFFICDWT FOR FLAT PLATR9

It maybe noted that a relation for the 100al drag coeflioient
on a flat plate may be found in a fsshion similar to that used
later for a disk. Consider a plate of unit width; for the full
length 1,

()
D=CD ; P~l

=fc.=(;Pu2)d.

With the subscripts m and z referring to
values, re9pective1y, for the length z,

p–=&#

3 P~

s

r
. c.= (h

o

x d++c..=c..

Rvx=
-u

‘CD” lgDm=CD=~+

x

or

mean and local

@?!@?d+~.lgk
[‘pm d(log R) 1

Therefore
Cti= C..(n+ 1)

where
_4kg I&)

‘– d(logR)

BOUNDARY RRLATION FOR REVOLVING DISKS

The moment coefficient is defined as

The moment may also be written

M=2P
s

6’(2~a)uruG dy
o

‘2pw2a’(%3’%P”2w$
u

()
‘6,= pw2a6 --# #

where u, is the variable radial velocity and u~ is the tangen-
tial veloci~, from which

();C.= C“ 2%
waa

The drag formula then reads

A similar result was obtained by Goldstein in reference 4. .

TESTS AND RESULTS

Tests on disks, cylinders, and streamline rods were con-
ducted to detemine drag or moment coe5cimM. For the
cylinder the two coefficients are equivalent; for tho disk and
the rod it is more convenient b employ tho momcmt coi35-
cient, which can be measured directly. In order to intend
the r~me of Mach number, several tists were conducted
with Freon 12 or Freon 113 as the medium. The test
results obtained are of technical interest beoause somo of
the data, particularly for the high Mach number rcmgo,
were obtained for the iht time. It may be pointed out
that many of the earlier tests on revolving disks rind, in
particular, on revolving cylinders were conducted on a
rather smali scale and in a limited range of Reynolds num-
ber. It maybe noted that a considerable rango of Reynolds
number is generally needed in order to confirm with su5-
cient reliability a particular theoretiml formulm. For
instance, it may be impossible to obtain a measurable
difference between logarithmic or power formulas if a short
range of Reynolds number is available. This matter of
distinguishing between the various types of formulas is of
theoretical interest.

RXPBEUMENTS ON REVOLVING DISKS

The momant coefficient is defied as

c.=~
$@a5

This definition corresponds to the one for huninar flow on a
revolving disk given by von K6rmfin in referenco 1 as:

C~=alR-in

where

R=~2

.
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The constant G used by von K&zn6n was 1.84 for one side
or 3.68 for both sides; tbia value was later adjuskd by
Cochmn (see reference 8, vol. I, p. 112) to a,=3.87. If this
correctad’ value of al is- inser~d, the-
flow reads

C~=3.87R-~P

The turbulentdow formula as given
revolving disks is

C~=0.146W118

formula for laminar

by von K~&n for

In figure 2 are shown the experimental results for tests of a
series of revolving disks. The’ Reynolds number ranged
from about 1600 to more than 1,000,000. Note that the test
points lie along the theoretical curves given by the von
K&n&n formulas. The transition from lamimw flow is seen
to occur at I?=31O,OOO. This was the largest value reached
with the most highly polished disk.

The thickness of the Iaminar boundary layer is, according
b von Ktirrmfn,

J
6=2.58 ~

or, which is equivalent,

Using Rb=6~ leads to

For the transition Reynolds number, 310,000,

Ra=2.58@

= 1440

which is of the same order as the minimum critical value
obtained for pipes.

Several tests were conducted for the purpose of investi-
gating the factors affecting the transition Reynolds number.
The fit observation was that the transition Reynolds num-
ber could not be increased beyond the value 310,000 no
matter how highly the surface was polished or whatever
other precautions were taken. Likewise, it was unexpectedly
d.ifiicult to decrease the transition Reynolds number. The
application of coarse sand (60 mesh) glued to the surface of
a disk (1-ft radius) only reduced the transition Reynolds
number to about 220,000 (fig. 2). The reduction in the
transition Reynolds number by initial turbulence waa also
studied. A small high-pressure air jet applied near the cen-
ter of the disk produced the ~eatest observed reduction
(fig. 2) and brought the transition to a point near the inter-
section of the lines representing the drag formulas for lami-
nar and. turbulent flow, which is the absolute minimum.
Note that the drag in the turbulent region is quite appre-
ciably increased by surface roughness.

Log. K

M
FIGURE Z.-Moment cxffident CJI- ~—for dhknm ftmoiionof Reynoldsnnmbw.

*S
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The valuea of the moment coefficient given in figure 2
represent obviously an integrated drag over the disk. An
expression may be obtained for the local drag coefficient CD=
as a function of local Reynolds number as follows:

()
ill= Cu &’as

‘2P”~(+’fi)’2@dr

A4.---..CM
1 2a5
p

“1rc”@(3
C“(:)=4”P+’(3

~(3+’m’=’”Q”4a’;
r dC~
– ~+ 5cJf=4il-cD,
a

<) z

By substituting

,= g
d w

2:~d~+;=cAf= CD,

or

and

K+;
10g cD==lo~ C=+log ~

where

d(lo CJK=*
If

C.=rmn
then

Ch= ‘==n c.

13y use of the expression for log CD=, some of the data of
figure 2 are plotted in figure 3. Although the general picture
does not change much, the abrupt nature of the transition
becomw apparent.

An illustration of the boundaxy-layer profiles for various
radii or Reynolds numbers is given in figure 4, in which
curves of equal velocity uJw are also plotted. Note that
the thickness of the boundary layer in the laminar region is
essentially constant. Tho transition value of R, 310,000,
is shown approximately by the line marked “Approx.
transition” in figure 4. The nominal larninar bounda~-
Iayer thickness consiskmtly appeam to be somewhat in excess
of that given by von K4rm6n in reference 1. There appears
to be some discrepancy from the theoretical velocity distri-
bution which is shown for the laminar boundary layer m

-i u-maw sm a wr c4 ‘m. -aam. cfIsM
II

HW——

- — b

-2.2
b~ 1- II IIH II9.
: Lom ,.--Smooth 24-m -&ami disk

.,-. /. < 1111 1

-., — II I
&or flow. \

- -&.4
X7 .’ . 2 ~ _ _ _ -

Lti” = Rx H -L

> - . _ _ _ _ _

-2.6 \
>

Y --
Turbulentflow, ‘ >

s’” \ ,
6X= (W46)~R=-H ~...““’

’28 o“
~

4
\

-a040 42
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obtained from work by Cochrnn. (See reference 8, vol. I,
p. 112.) It is recognized that the experimental error in this
case is of considerable magnitude. The turbulent boundary
Inyer shows ahnost perfect agreement with the logarithmic
curve, which is plotted for one proiile in figure 4.

It may be remarked here that a series of hot-wire tests
were run to study fluctuations in the boundary layer with the
following remdta:

(1) No disturbance-s were noted in the laminar region
(2) A pure tone of n frequency of about 200 cycles per

second was observed in the transition region
(3) A random disturbance involving much highar fre-

quencies was observed in the turbulent region
In figure 5 the upper range of the Reynolds number has

been considerably extended. The highest Reynolds number

reached is 7,000,000. The $power law holds fairly well in the

observed rmgo which, however, is tio limited to permit a
distinction between the power law and the logarithmic law
for the velocity distribution. The main purpose of the teats,
the results of which are shown in figure 6, was to investigate
the effect of the Mach number. The iirst run taken with air
as the medium extended to a Reynolds number of about
2,000,000 and a Mach number of 0.62. By using I?reon 12
as the medium, the range of Reynolds number was extended
to 7,000,000. At the lowest pressure, the highest value of
the Mach number reached was 1.69. All the data for Freon 12
show a slightly higher drag than that given by the von
F&mfin formula, apparently because of some systematic
error, The signiflcnnt result of this investigation is that the

8 a5 9 $2S
215m 241,LD0 272000 303.000

drag coefficient is absolutely independent of the Mach
number. A separate extension of the experiments to a Mach
number of slightly more thrtn 2 further codrmed this inde-
pendence of the lMach number.

EXPERIME2W’S ON REVOLVING CMJ~EW

The experimental results for revolving cylinders are shown

in figure 6 as a plot of loglOCD against log@, where R= ~S.

The drag formula for laminar flow on a revolving cylinder
is obtained from Lamb (reference 9, p. 588) as

where

C.=g

M
‘qlj%

In this formula S is the surface area and a the radius. In
this case it is convenient b use CD instead of CM, which was
used for the revolving disk, because no integration is in-
volved. The laminar curve is shown in figure 6. The drag
relation given by

—=—0.6+4.07 ~og,oR-@
h\D

for the turbulent flow is also shown in figure 6.

10 /m II DiskMdiUS
335cm 37L7LW0 dmom R

,10’

,08

0 i4J9 0 .4 .8 0 .4 .8 0 .4 ,8 0 .4 .8 0 .4 .8 0 .4 .8 1.2
@r

I?loum L-O&frvOd vdoalty pr05k33onrwdving dlsb showingthe tram!tion rerton.
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The experimental remdti are replottad in figure 7, where

&shomma function of logl&/E. The relation

for the turbulent flow

—=–0.6+4.07 log,oR~ED
hD

appears in figure 7 as a straight line. The coefficient CD in

this formula corresponds to a ?alue of 0.4 for von IUmAn’s
universal constint ~. The relation for the laminsr region

UD=~ appears as a curved line near the origin.

It is noted that the drag coefficient for rough cylinders is
dependent on the relative grain size e/a, where Gis the size
of the sand and a is the radius of the cylinder (see fig. 8),
and that for each grain size the drag coefficient remains
constant and independent of the Reynolds number beyond
a certain minimum or critical value, which lies on the line
for turbulent flow. In regard to the magnitude of the drag
coefficient as a function of relative grain size for particle
‘(saturation” of the surface, it may be remarked that the
vahm of 6 is a memmre of the thickness of the sublayer or,
what amounts to the same thing, a measure of the minimum
grain size of the turbulence. It is therefore to be expected
that the surface roughness will become effective at the
Reynolds number for which ~~, the critical value of q be-
comes less than the grain size e. Inversely, it may be seen
that, if the Reynolds number becomes smaller than this
critical value, the grain size of the turbulence is too large to
be affected by the surface roughness. With e greater than
cm, which is 3.3L, the following relation is approximately
true for the drag coefficient beyond the critical Reynolds
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number for surface roughness of saturation density:

&=–O.6+4.07 log,, 3.3@
E

=2.12+4.07 log,O ;

In figure 9 the exqmrimental points are shown to satisfy this
theoretical relation with sufficient accuracy.

Tests were made to determine the &ect of the density of
spacing of grains of a given size, and the results are presented
in fignre 10. Such tests were made with a certain unit
grain size but with the surface density in grains per square
inch varied between 90 and 2200. The grain size used~cor-

responds to the size ~=0.03, also used for the preceding ccx-

perimental rw.dts shown in figure 8. It is veritied that the
critical Reynolds number depends on the grnin size only,
and it is further shown that the slope of the drag curve
beyond the critical Reynolds number is a function of the
density. A saturation condition evidently always mists,
in which the drag coefEcient remains approxinmtdy con-
stant and equal to the critical value.

EXPHUMENTS ON STREAMLINE RODS

In figure11 results are given for certain more or lw.s stream-
line bodies, each tested in two or more diilerent mediums.
The tests were obtained by using actual propellers of 12-inch

o
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diameter, which are designated propellers B and C. Pro-
peller B had a section of double symmetry with a circular-arc
centaur line. Propeller C vim obtained by reducing the
chord of propeller B by removal of about one-fifth of the
chord near one extremity to obtain a blunt-nose airfoil. By
running propeller C backwards an airfoil with a blunt trailing
edge could also be studied. The coeflicieut used in fi.gms
11, 12, and 13 is the standard torque coefficient. for
propellem

I?or the symmetrical airfoil B, a value of the Mach num-
ber 1of about one was reached in air, the range was extended
to 1.6 in Freon 12, and the characteristic decrease in the drag
coefliciont was finally reached in Freon 113. A considerable
decrease in drag coefficient was noted at the largest Mach
number, 2.7, which ta the knowledge of the authors is the
highest Mach number reached mcept for a few cases of
projectiles.
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The blunknose airfoil section C showed approximately the
same low-speed resistance as the symmetrical sharp-nose
section B but had a mtium torque coticient very much
in excess of that of section B. The teat extended only to
near the peak of the torque curve with Freon 12 as the
medium. By reversing the direction of motion of propeller
C to obtain a blunt rear, the expected large increase in drag
at low Mach numbers was observed. The appreciable
dMerence in Reynolds number for air and Freon 12 is
apparent from the difference in drag coefficients in the range
below a Mach number of unity. For h~her Mach numbers,
the drag coefficient of the section with the blunt rear lies
between the drag coefficients of the doubly streamline section
and the blunt-nose type; the streamline leading edge is
approximately twice as effective as the streamline trading
edge, a result in general agreement with earlier observatioma.
It should be noted, however, that the lowest drag is obtained
with both lading and trailing edges streamlined.

The e.fleet of the Reynolds number is also shown in figure
12, which gives the resuha of tests to study how the scale
effect is superimposed on the Mach number effect. It should
be noted again that the Reynolds number effect appears only
for a Mach number below unity. A wide variation in the
Reynolds number shows no consistent measurable effect on
the drag for a Mach number greater than unity. Similar
data for a small angle of attack, instead of zero angle of
attack as used in the preceding discussion, were used in one
case, for which rmilts are given in figure 13.

The four propellers referred to in figures 11 to 13 are shown
in a photograph (fig. 14) and the dimensions of the propellers
are given in table I.

TABLE I

DIMENSIONS OF PROPELLERS OR REVOLVING RODS FOR

TE9TS AT HIGH MACH NUM33ERS

Allpromllerah avoastrakbt twerlncbmdandthkkms%Tbo tfw am rmmdal es abmm
h * 14]

B c71rOoIaram----- o L 76 0.31 L07 0.14
Blent ~__.–-- 0 L2J) .35

:
.16

Ofrudararu_._-.. ●:6 ~g .18 i: .11
OlrmffuarO______ .13 ..53

O[%XW” ‘~mtit”p

.07

fmrfmtdY the oak haffof the bfade bad anangle

It is of some interest to interject a superficial analysis of
the results presented herein, in view of Ackeret’s formula
as given by Taylor (reference 10). For the local section
Ackeret gives the drag coefikient as

()
-1/2

C.=2 :–l (Zd+m+im

where the bar indicatea the mean vtdue. For zero angle of
attack and a symmetric section ivith ~=~ this relation
becomes

()C.=4 $– 1 -’~

For a circular-arc section, ~=~ p..,’, whcro ~m.z ]s the

maximum angle. This angle is, in turn, approximately
equal to twice the thickness ratio t, which is the total thick-
ness divided by the chord. For circular-arc swt ions,
therefore,

Figure 15 shows CD plotted against Mach number for
different values oft. At M= 1.0, the curves tend erroneously
to infinity. This effect follows from a simplifying assumption
used in tho derivation of Ackeret’s formula.

m 14.-Ro@kI% B, O, D,

-J

and E.
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~QUBE I&.-ThenWfcal mrvcs of the dragcmITmf@ntCOogdmt Mnfi numberfOrWbus
thicknessiatlLMforcfrouku-eroofrfofkby Ackeret’sformula.
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By using the general formf (M) instead of the Mach num-

ber function $– 1, the drag coefficient maybe written

c+ tff(iki)

The torque coefficient is lmown experimentally to be a
function of the Mach number, or I/xl, where Z1is the fraction
of radius at which the Mach number is unity; thus, the fol-
lowing integral relation is obtained:

There are several ways of handling this relation. The non-
dimensional chord c and the thickness t may be taken to
mpreaent a preferred section at approximately 80 percent

24
II II 1 I , t .-

11 Th-.-o +:,-d

20 I I I I I #,--. ,
~

,

1.6
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I
1 , , ,

I l\ I 1 I I I I 1 I
92 \. I

\

// N .
,8 I I I I [ v I I v 1

F.. —- —, —. –.-, 1 -.

Mach rnmber, M

F1OURE16.–VsltrH of drag functionKM) M fmmtfonof Mach nmnkw from analyafsof
_mti mormmtmrm for propellerB fn flgnro11.

of the radius. By assuming an initial drag coefficient CD
any desired accuracy may be obtained by iteration methods.

The function j(ikf) shown in figure 16 has been obtained
for propeller B by such a process based on the experirmmtal
data given in figure 11. Note that the drag coefficient
approaches the value given by the Ackeret formula for large
values of M’, for which f(ikf) approaches (W-1 )-ll*. Note
further that the maximum value of the drag coetbient
occurs at M= 1.2 with Y(M) almost exactly equal to unity.
It is, of course, not to be concluded that the function
has general validity; the function is given here for propeller B
for the purpose of comparing the data with the Acke.ret
theory.

CONCLUDING REMARKS

Experimental results on the drag of revoltig disks have
been presented, which substantiate to a remarkable degree
drag formulas baaed on the von K6rm4n-I?randtl theory of
skin friction. The range of the imwstigation was extended
to a Mach number of 1.69, which is beyond the range of any

mrlier tast, and to a Reynolds number of 7,000,000. It was
established that the skin friction is independent of the Mach
number up to this value and appears to be a function of the
Reynolds number only.

The drag at supersonic speeds was studied with revolving
rods or propeller sections. Mach numbers as high as 2.7
were attained in the teats. The drag at supersonic speeds is
a function of the Mach number only, as it appears to be essen-
tially independent of both the Reynolds number and the
nature of the medium. The characteristic peak in the drag
curve observed for projectile was obtained. For thin
Streamline bodies, this peak appears at Mach numbers only
slightly beyond unity; in fact, it appears at a Mach number
of about 1.2. Systematic teds were conducted on stream-
line bodiw with combinations of sharp and blunt leading
and trailing edges for the purpose of obtaining the relative
merits of such features. It was found that the increase in
the peak value of the drag coefficient resulting from a blunt
nose is about twice that resulting from a blunt trailing edge,
when both drag coeflicienti are compared with the drag
coefficient of a section with streamline leading and trailing
edgea, which has the lowest value.

Signihnt results were obtained on revolving free cylin-
ders for which references to earlier tests seem to be lacking.
It was found that, at very low Reynolds numbem, the ~m
asymptotically approachw the laminar drag of the classical
theory whereas, at higher Reynolds numbers, the drag is
found to conform to a logarithmic formula of the von
K&rm&n type. There is no distinct transition from laminar
to turbulent flow, as is found in pipes and on revolving disks.
The flow is essentially turbulent down to the smallest
Reynolds numbers.

The effect of initial turbulence was particularly studied in
connection with tests of revolving dislm It was found that
the transition Reynolds number was very slightly tiected.
The critical Reynolds number at which the roughness effect
appears depends on particle size oily and is not a function
of particle density. Beyond this value of the Reynolds num-
ber, the drag coefficient is constant only when the surface
is “saturated,” that is, when the density of the individual
particlw attains a maximum value. For a roughness of less
than this particle density, the drag coeflkient decreases with
Reynolds number.

It is interesting further to note the persistence of the
logarithmic relationship. When l/fi is plotted as a func-
tion of log R@ (where CD is the drag coe&ient and R u
the Reynolds number), the lima representing turbulent flow
are invariably straight. A rather critical demonstration of
the logarithmic velocity pattern near the surface is thus
shown. The range investigated is of considerable extent.

LANGLEy MwonmL 4bRONAUTICAL lAnomToEY,

NATIONAL ADVISORY Co bmmrEE FOR &3RONAUTICS,

LANGLEY FIELD, VA., ~@ 24,1944.



APPENDIX A
SYMBOLS

[-,

To

P

u.
u
u maI
u.
v.

u,
u

Au

1
T
t

v

P

r

a

x

JJ

c

(0gfriction velocity p

shear per unit area at surface
mass of air per unit volume
mean fi-iction velocity (horn O to z)
stream velocity for flat plates
maximum velocity
mean velocity (in pipe9)
reference veloci@ (at a given fraction of

radius or of other reference dimension)
velocity at 6
absolute variable velocity of fluid in

boundary layer
velocity deficiency, stream velocity minus

local velociiy for flat plates
radial velocity for disks
tangential veloci~ for disks
angular velocity, iadians
thickness of laminar sublayer
boundary-layer thickness
friction length (v/U,)
total length of plate
reference time (L/ U,)
time; also, thidmess ratio for propeller

“Thickness of airfoil - “
section

( Chord )
ccmflicient of kinematic viscosity
coefficient of viscosi~
variable radius of pipe, disk, or propeller
radius of pipe, cylinder, or disk; also,

veloci~ of sound in fluid
distance from leading edge of flat plate in

direction of flow; also, llaction of pro-

( where R denotespeller radius x=% \

radius of prop-eller tip
)

fraction of propeller radius at which iMach
number is unity

distance normal to surface

nondimensional profile constant for turbu-
lent flow near walls

fraction of referenc8 dimension
()

:=k ;

also, nondimensional chord of airfoil

(=)

a

c.

CD.
c Dz

D
D=
e
em

c.
M

R
R6

R=

R.
Ra
v

!z

s
CQ
Q
iv
n

ii, 92

i%iwz

c,

G

c=G+G
(23 ,04,...

KI, & &, .

k
al

angle of attack of airfoil; also, profilo
constant (($/L)

total-drag coefficient (Many authora uso j,
y, or x/4 iustead of CD for pipes.)

mean drag coefficient (from O to z)
local drag coefficient
drag; also, propeller diameter
drag of plati (from O to z)
grain size of roughrws
grain size of critioal roughness for pmticu-

Iar value of drag coefficient
moment coefficient for revolving disks
missing momentum; moment for disks; or

lMach number
Reynolds number
Reynolds number based on thickness of

bounda~ layer
Reynolds number based on distnnco from

leading edge of flat plate or on local
radius of disk

Reynolds number based on pipe diamotmr
Reynolds number based on pipe radius
velocity (Ackeret formula)

(
dynamic pressure for cylindem, q=&.02ag

)
area of cylinder
torque coefficient (QIpn’D6)
torque
number of blades
rotational speed, revolutions per second;

also, coefficient in power law
angles which upper and lower surfaces of

airfoil make with center line
maximum angle which circular-arc mction

makes with center line
nondimensional velocity measured on log-

arithmic veloci~ profile when this curve
is extrapolated to y=L

nondimensional excess velocity at y=a
over that of logarithmic line extended
to ~=a

constants
constants
constant
constant in equation for moment coefE-

cient of revolving disks
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APPENDIX B
NUMERICAL VALUES OF POWER REQUIREMENTS FOR REVOLVING DISKS AND CYLINDERS

A chart is presented (fig. 17) which gives the horsepower
required to drive a smooth disk in standard air (760 mm
and 15° C, P= O.00238 s&s/cu ft and u= O.000159 ft3/see).
Lines of constant horsepower ranging in value from 0.01 to
1000 are plotted with disk rotational speed (in rpm) as
abscissa and disk diameter (in ft) as ordinate. The dashed
line in figure 17 represents a Reynolds number of about
400,000, which is considered the transition Reynolds
number.

The following formulas were used to calculate the power
for disks operating in the turbulent region:

cM=o.146R-’~

Mu
Horsepower==

0.146
‘mm ‘oaaL”utipo.’

Inasmuch aa the formula for CM is based on the 1/7
power for velocity distribution, the calculated values of C=

I 111111 I I 1111111 I
/00

\

\~ -.
\.\ ..\. . ,,,,,

f

Rotoflond qoee~ rpm

mom 17.—poweImmhwnmt forsmwth dhks

s49110-ae25

are too low for high Reynolds numbers. This error may
become appreciable for the highest power, since the chart
(fig. 17) covers a range of Re-ynolds numbers to 60,000,000.

A chart is also premnted (Q 18) which gives the horse-
power required to rotate a smooth cylinder of unit length
(1 ft) in standard air. The following formulas have been
used in calculating the curves:

Mu= Cnq&a

Mu
Horsepower=~

= c..u@’d
550

where, for smooth cylindem,

and, for rough

—=2.12+4.07 loglo :
A

Ic@

I I

I I I
\

J /00 Low IQ(IOO 4m
Rofafiwo/ speed rpm

FxomE l&-Power reqofmmentforsmcdh oylinden (1.ft length).
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APPENDIX c -
COLLECTED S~-FRICTION FORMULAS

FLAT PLATES
.-. -—-. ——

SYMBOLS

The following symbols are used in the formulaa for flat
platea collected herein:

0.
ODZ

z

1

R

R=

totaldrag coficient

local drag coefficient at point z

distance from leading edge of flat plate in direction of
flow

length of flat plate in direction of flow

Reynolds number based on 1

Reynolds number based on z

LAMINAR FLOW

The formula for total drag coetlicient

CD=l.328R-’fl

is based on the simplified hydrodynamic equations developed
by Prandtl in 1904. (See reference 2, p. 2.) The constant,
which was calculated by Blasius in 1908 aa 1.327, was ML
culated by Tbpfer in 1912 as 1.328. (See reference 3, p. 89.)
The formula for local drag co&cient is

0~z=0.664Rz-in

Von IGlrmfi, Schoenhem, and others have indicated that, if
the total drag coefficient is

O~=Co@ant R’

the local drag coefficient is given as

Q.z=(n+l)C.

This relation is derived in the section entitled “Local Values
of Drag Coefficient for Flat Plat~” in this paper. All for-
mulas given in this appendix for the local drag on flat plates
me in conformity with this derivation.

TURBULRNT FLOW-SMOOTH SURFACE

The formulas
C.=0.074R-’I’

and
0~z=0.059R=-l@

were first calculated by von IGIrmh in 1920. (See references

1 and 2.) Based on results from pipes and on the ~-power

lrLw for veloci~ distribution, they are consequently valid
in, the lower Reynolds number range, R<1O,OOO,OOO.

3%2

(UNJi MDJi)

Some writ8rs use the following for.nmhw of the same
type, which are fairly accurate to rLReynolds number of
500,000,000:

CD=0.030R-in

0DZ=0.026RZ-1J7

Of more general validity are the so-called logarithmic drag
formulas of the @pe

The form of this relation was determined by von Khm$n
with constants adjusted h conform with data by Schoenherr
and othem. (See reference 2, p. 12.) In the pre9ent paper
a diflerent form has been developed, which is in somewhat
stricter theoretical conformity with the physical relations
involved:

Prandtl has developed an explicit expression which gives
essentially the same results as the logarithmic formulas. It
is

c.=o.455(log@-~

(See reference 3, p. 153.) The local drag coefficient has also

been given by von K&rrn&n in a logarithmic form with the
constants adjusted to fit the experiments of Kemp, which
included measurements on small movable plates inserted on
a long pontoon. This formula is

—=1.7+4.15 log,,R=oti
J&

(See reference 2, p. 12.)

TURBULRNT FLOW-ROUGH SURFACE

Schlichting (see reference 8, p. 382) gives the two following
formulas for the total and the local drag coefficients for rough
flat platw, respectively:

OD=(l.89+1.62 loglo : )

-~b

( )

-Y5

c=.= 2.87+ 1.58 log,, :

Von K&rmtin (reference 2, p. 18) gives for the local drag
coefficient for rough surfaces a formula of the logarithmic
type

—=5.8+4.15 hglo : >1~

J&
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PIPES

SYMBO15

The symbol.& used in this section refers to the Reynolds
number based on the pipe diameter and the mean flow
velocity, and the symbol R. refers to the Reynolds number
based on pipe radius. Some writers use J or Y instead of
U~, used herein, and others use h where h=46’D.

LAMINAR FLOW

J?or lam!inar flow in pipes the formula for drag coefficient is

This formula is attributed to Poiseuille and Wiedeman.
(See reference 3, p. 38, and reference 8, p. 298.)

TURBULENT FLOW-SMOOTH SURFACE

The formula for drag coefficient for turbulent flow in
smooth pipes is

C~=0.079R~-~14

This formula is based on the experimental workof Blasius
(see reference 3, p. 136), for which the Reynolds number
range was rather limited. Later work by Nikmradse (ref-
erence 6) extended the range of Reynolds number to a
much higher value. The following formula of the type
developed by von K&rm&n fits the data better:

‘= ‘0.40+4.00 ]Og10RdflD
&

(Sm reference 8, p. 338.) b the present paper a formula of
this type with different wmstants is developed:

&=o.40+4.07 log,, R..6

TURBULENT FLOW-ROUGH SURFACE

For turbulent flow in rough pipes

—=3.46+4.00 log,,f
h

Tho experimental work in deriving this formula was done
by Nikumdse. (See reference 8, p. 38C, and reference 6.)

REVOLVING DISKS

SYMBOLS

The following symbols are used in the formulas for revolv-
ing disks:
P moment cocffi cient
& local drag ccdficient at radius x

R.
( ‘)

Reynolds number at radius z $

LAMINAR FLOW

For laminar flow
CAr=3.8717-’ ‘

and

This formula for local drag coefficient
relation

is derived from the

For the development of this relation and for references, sco
the section entitled “Experiments on Revolving Disk..” in
this paper.

TURBULRNT FLOW

For turbulent flow

(?M=0.146?i-1’

and

Cnz=0.053Rz-llb

The formula for the local drag coeiiicient CD= is derived
from the equation for the moment coeilicient CM iu the same
way as for the case of laminar flow. The local drag coefficient
in logarithmic form may be given as

&z=–2.05+4.07 log,o R.@;

The constant —2.05 has been adjusted to fit the data of
figure 3.

REVOLVING CYLINDERS

For laminar flow

CD=;

For turbulent flow on smooth cylindem

—=–0.6+4.07 log,. R@
bD

For turbulent flow on rough cylindem

—=2.1+4.0 bglo :
k

The development of these formulas and the referencca are
given in the section entitled “Experimeniw on Revolving
Cylinders “
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